IWA World Water Congress & Exhibition

11 – 15 September 2022 | Copenhagen, Denmark

Reagent recovery from dairy industry wastewater through membrane processes

Rubén Rodríguez-Alegre, LEITAT Technological Center / Universitat Politécnica de Catalunya, Spain

A STATE OF STATE AND INC.

INDEX

- Introduction
- Methodology
- Results

Conclusions

RESEARCH FRAMEWORK

RESEARCH FRAMEWORK

- India is ranked 1st in milk production contributing 26% of global milk production.
- Cleaning-in-place (CIP) requires large quantities of water in the dairy industry (nearly 75% of the total water required)
- <u>Three stage process</u>: basic cleaning, acid cleaning and detergent

SUSTAINABLE DEVELOPMENT GOALS

the international water association

RESULTS: FORWARD OSMOSIS

$SEC \left(\frac{Kwh}{m^3}\right) = \frac{\Delta P \cdot Q_{feed}}{Q_p}$						
Experimental conditions	C ⁰ _{draw} [mol/m ³]	C ^f _{draw} [mol/m ³]	Cº _{feed} [mol/m³]	Q _p [m³/h]	ΔP [Pa]	SEC [kWh/m ³]
0.005M NaNO ₃	50	41	18	0.00098	3.67 10 ³	0.0324
0.125M NaNO ₃	125	100	18	0.00274	3.67 10 ³	0.0108
$0.25M \text{ NaNO}_3$	250	180	18	0.00616	3.67 10 ³	0.0046
$0.50M \text{ NaNO}_3$	500	370	18	0.01540	3.67 10 ³	0.0018

RESULTS: REVERSE OSMOSIS

$$SEC \left(\frac{Kwh}{m^3}\right) = \frac{\Delta P \cdot Q_{feed}}{Q_p}$$

Experimental conditions	Cº _{draw} [mol/m³]	C ^f _{draw} [mol/m ³]	C _{perm} [mol/m ³]	Q _p [l/h]	ΔP [bar]	SEC [kWh/m³]
$0.125M \text{ NaNO}_3$	100	121	12.7	5.2	10.4	45.3
0.25M NaNO ₃	180	234	22.5	5.42	14.2	58.5
0.50M NaNO ₃	370	606	8.19	5.1	23.6	102.5

RESULTS: BIPOLAR MEMBRANE ELECTRODIALYSIS

Experimental conditions	% conc. HNO_3	% conc. NaOH	N	Voltage [V]	Intensity [A]	Q _p (m³/h)	SEC [kWh/m³]
0.05M HNO ₃ /NaOH	61.38	23.03	30	9.02	0.09	3 10 ⁻⁵	3.59
0.1M HNO₃/NaOH	182.82	77.83	30	9.02	0.09	3 10 ⁻⁵	16.48
0.2M HNO ₃ /NaOH	6.77	-55.33	30	9.02	0.12	3 10 ⁻⁵	4.59
	 12,1 10,0 10,0<td>00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 0 60</td><td>120</td><td> Acid (HNO: Base (NaO) Concentrat 180 24 </td><td>3) H) ion in feed 0</td><td></td><td></td>	00 - 00 - 00 - 00 - 00 - 00 - 00 - 00 - 0 60	120	 Acid (HNO: Base (NaO) Concentrat 180 24 	3) H) ion in feed 0		
			Tim	e (min)			

CONCLUSIONS

- According to Forward Osmosis and Reverse Osmosis results, SEC and permeate quality, the optimal concentration of draw solution is 0.125 M NaNO₃.
- In Electrodialysis tests, the best performance was reported for an initial concentration of 0.05 M for both acid and base as draw solution.
- In Electrodialysis, The concentration of NaNO₃ was reduced by 75%.
- The work done so far, yields promising results in the concentration and extraction of cleaning reagents for reuse in dairy industry.

THANK YOU

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 820906 and the Indian Department of Biotechnology.